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 The stock market index can be forecasted in 
two ways --- either through taking those 

external factors that influence movements in the index or by 
basing one’s predictions on the previous values of the index. 
The current study has used the method described later by 
employing the Box-Jenkins methodology --- a method 
famously used by most researchers while conducting ARIMA 
modeling--- by taking past figures of KSE 100 Index. 
Quarterly figures of the Index were, therefore, taken for 22 
years from August 1995 to October 2017 that translated into 
90 observations. Results revealed that the forecasting model 
used in the study did well in anticipating returns in the short-
run. The findings of the study can be consumed by investors, 
particularly short-term, in deciding when, and when not, to 
risk their hard-earned funds at Pakistan Stock Exchange. 
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Introduction 
 
The capability to forecast the future can never be underrated when one talks about 
investments. Since, of course, the future is always not certain, investors often seem 
to be pondering about discovering the suitable time to invest their funds. Prediction 
of the stock market index is no different from forecastingother kinds of investment 
as many factors play their role in the returns. A stock market index movement tells 
us in which direction a given economy is heading towards. Owing to these reasons, 
investors keep looking at the index to observe what is going on in the stock market. 

A time-series variable can be forecasted in two ways. One is to forestall the 
direction the variable is expected to go in keeping with all the factors that have a 
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bearing on it. The other method is to predict its future values based on its lagged 
observations. In today’s era, researchers are increasing their reliance on using the 
method mentioned later for forecasting their variables and this study has also 
employed the method of relying on the lagged values of our variable of interest. 
The current study has also employed the same methodology known as the 
Autoregressive Integrated Moving Average (hereinafter referred to as the ARIMA) 
technique of forecasting time series.  

ARIMA technique has been long in practice but the method was more 
popularized by Box and Jenkins (1970) after they discovered a method for 
effectively using ARIMA. The model is now often employed using what is 
commonly known as the Box-Jenkins methodology. 

The study serves two objectives, i.e., to investigate whether stock returns could 
be adequately forecasted every quarter using the ARIMA modeling, and secondly, 
to explore how many previous quarters of data will be engaged in efficiently 
forecasting the current (or future) value of the index or the returns. It is hoped that 
by using the results of the current study, short term investors may get some insights 
into how the stock market behaves in the short run. 
 
Review of Literature 
 
Forecasting of time series variables has always remained challenging. Researchers 
over time have put their efforts to efficiently forecast variables of their interest. 
ARIMA models also have a history of being employed by many academicians and 
professional investors. A discussion of some of the previous work follows:  

Meyler, Kenny, and Quinn (1998) employed the ARIMA technique for 
anticipating inflation in Ireland and found that the model had a decent prediction 
capability. Jarrett (1990) used ARIMA for corporate earnings estimation but 
concluded that the model gave no better results than the conventional models. 
Another attempt was made by Raymond (1997) who predicted prices of real estate 
using ARIMA. He found the model helpful in envisaging the direction the prices of 
the real estate were going. The model was also used by Contreras et al (2003) for 
anticipating electricity prices in the country of Spain and the city of California who 
also found a good short-run prediction power of the model. Gilbert (2005), on the 
other hand, used the ARIMA model for processes related to the supply chain. He 
found that all those supply chain-related variables including inventories, demands, 
orders placed, and lead times could be easily forecasted using the model. Among 
the users of ARIMA was Guha (2016) too who endeavored to estimate the prices 
of gold in India and who found that the prices could be easily anticipated in the 
short run.   

The production of different crops has also been forecasted by researchers using 
the ARIMA model. For instance, Padhan (2012) checked the productivity of some 
34 crops in India and found that the tea crop was the most predictable whereas the 
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papaya crop was not predictable at all. Similarly, the production of Sugarcane was 
predicted by Manoj and Madhu (2014) in some parts of India employing the 
ARIMA model and discovered that a good forecast was made by the model for 
around five years. Another attempt was made by Hamjah (2014) who predicted the 
production of rice, using ARIMA, in Bangladesh and found the model adequately 
successful. The production of the major crops of an Indian state named Karnataka 
was estimated by Jadhav, Reddy, and Gaddi (2017) in a paper in which they were 
able to adequately predict the production of these crops for the next three years. 

There have been a few studies conducted to anticipate stock prices or stock 
market index engaging the ARIMA model. For instance, Mondal, Shit, and 
Goswami (2014) did a big attempt by including shares of as many as 56 companies 
of India for their future price anticipation using the ARIMA model. They found that 
for around 85% of shares included in their study the prediction carried out through 
the Box-Jenkins method was very accurate. Similar studies were conducted by 
Adebiyi, Adewumi, and Ayo (2014) and Banerjee (2014) who estimated stock 
returns using ARIMA and found the model to be decently capable. We now give a 
brief description of how the Box-Jenkins methodology works in practice. 
 
The Box-Jenkins Method 
 
The Box-Jenkins method offers a way of using ARIMA modeling for time series 
variables. Developed by Box and Jenkins (1970), the method helps us in 
identifying the number of the previous values of our variable of interest as well as 
the number of lagged values of the error term that our variable depends upon. The 
method works better when there is a larger number of observations for a given time 
series. However, 50 observations are considered to be the minimum acceptable 
number for a given variable below which the model is not likely to give meaningful 
results (Chatfield, 1996).  

The Box-Jenkins methodology consists of three steps. In the first step known 
as the model identification step, the researcher inspects the autocorrelation and 
partial correlation functions to explore the number of lagged values of the variable 
and that of the error term that significantly affects the variable. The second step 
known as model estimation involves estimating the model identified in the first 
step. A few other models that could give better results are also estimated to have 
something for comparison. The third and final step includes the diagnostic testing 
in which the models estimated are compared based on the information criterion 
values, adjusted R2 value, and the number of insignificant parameters. The Box-
Jenkins method requires the selection of the model that has the lowest information 
criterion values, the highest adjusted R2 value, and the least number of insignificant 
parameters. 
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Research Methodology 
 
The study at hand uses the time series data of only one variable ---the stock market 
index. Therefore, the univariate ARIMAtechnique has been employed to predict the 
variable’s future values. Needless to mention that a stationary time series variable 
(the one which is not integrated) needs an ARMA process. In other words, it does 
not need to be made stationary since it is already in a stationary position. In its 
standard form, an ARMA process as taken from Asteriou& Hall (2007) is as 
follows: 

Yt = φ1Yt-1 + φ2Yt-2+ - - - +φpYt-p+ εt + θ1εt-1 + θ2εt-2 + - - - +θqεt-q 
In the equation above, Ytdepicts the explained variable to be predicted, Yt-1 toYt-

p are the lagged or autoregressive terms of Yt, εt is the error term, εt-1 toεt-q are the 
lagged or moving average terms, φ1 toφp are the autoregressive coefficients, and θ1 
toθp are the moving average coefficients. 

In most cases, time series variables happen to be non-stationary in which case 
we need to differentiate them for enough time to make them stationary. A variable 
achieves stationarity only when its long-run mean becomes constant and its 
covariance becomes time-invariant (Gujarati & Porter, 2004). Since in our case the 
dependent variable, i.e., the stock index was also non-stationary, we took quarterly 
returns by taking its first difference and then dividing it over the lagged value of 
the variable. Therefore, an ARIMA model, i.e., the one that allows for the variable 
to be integrated, instead of an ARMA model was employed in the study. 

For analysis, quarterly figures of Pakistan Stock Exchange were engaged for 
22 years from August 1995 to October 2017 which produced90 observations 
making the sample large enough to be considered for ARIMA analysis (Chatfield, 
1996). 
 
Results and Findings 
 
The graphical analysis, as well as the unit root test of the variable stock market 
index, showed obvious trends in the data. Therefore, quarterly returns were 
computed, and then the data was checked for stationarity again. As can be seen in 
figure 1, the returns of the KSE 100 index were stationary. 
 

 
Figure 1: The Stationary KSE 100 Index Quarterly Returns 
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The unit root test of KSE 100 index returns also gave a t-statistic of -8.367 which 
was highly significant (p-value = .000) and which left no doubt that the returns 
were made stationary (see table 1). 

Table 1. ADF Test for KSE 100 Index Quarterly Returns 
Null Hypothesis: KSE 100 Index Quarterly Returns Has A Unit Root 

   t-Statistic p-value 
Augmented Dickey-Fuller test statistic -8.367 .000 
Test critical values: 1% level  -3.506  

 5% level  -2.895  
 10% level  -2.585  

Model Identification 
 
After stationarity has been induced in the variable, we proceed by employing the 
Box-Jenkins methodology. In the first stage, we try to identify the most appropriate 
model by looking at the correlogram to check for the number of autoregressive and 
moving average terms. The correlogram of quarterly returns of the KSE 100 Index 
is given in table 2. 

Table 2. Correlogram of KSE 100 Index Quarterly Returns 
Autocorr. Partial Corr.  AC PAC Q-Stat Prob 

. |*     | . |*     | 1 .105 .105 1.014 .314 

. |*     | . |*     | 2 .129 .119 2.567 .277 
       

. |.     | . |.     | 3 .030 .005 2.650 .449 

. |.     | . |.     | 4 .037 .019 2.782 .595 
.*|.     | .*|.     | 5 -.126 -.139 4.321 .504 
.*|.     | .*|.     | 6 -.172 -.162 7.222 .301 
. |.     | . |*     | 7 .073 .141 7.742 .356 
. |.     | . |*     | 8 .049 .085 7.978 .436 
. |.     | . |.     | 9 -.002 -.024 7.978 .536 
. |.     | . |.     | 10 -.010 -.039 7.988 .630 
. |.     | . |.     | 11 .073 .023 8.544 .664 
. |.     | . |.     | 12 .032 .026 8.654 .732 
. |.     | . |*     | 13 .058 .106 9.012 .772 

Looking at the correlogram in the aforementioned table, it is visible that the decay 
is beginning at lag 2 for both the autocorrelation and the partial autocorrelation 
functions. This hints towards an ARIMA (2, d, 2) model. We will, nonetheless, also 
check a few other models to see whether ARIMA (2, d, 2) is the best solution to our 
case or could there be another possible alternative to it. 
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Model Estimation  
 
The model identification stage of the Box-Jenkins methodology has prescribed 
ARIMA (2, d, 2) to be employed. So we start by estimating ARIMA (2, d, 2). We 
will later compare its results with other possible configurations of ARIMA.  

Table 3. OLS Estimation using ARIMA (2, d, 2), Model 
Explained Variable: KSE 100 Index Quarterly Returns 
Estimation Method: Ordinary Least Squares 
Observations included: 88 after adjustments 
Variable Coefficient Std. Error t-Statistic p-Value 
C .052 .019 2.70 .008 
AR(1) .023 .426 .053 .958 
AR(2) .480 .387 1.239 .219 
MA(1) .017 .445 .039 .969 
MA(2) -.426 .398 -1.069 .288 
R-squared .057 Akaike info. criterion -.984 
Adj. R-squared .011 Schwarz Bay. criterion -.842 
  Hannan-Quin criterion -.927 

The results of ARIMA (2, d, 2) are presented in table 3. Surprisingly, this model 
has all its coefficients highly insignificant. The model also has a worryingly low 
adjusted R2 value. Prescribed by the Box-Jenkins methodology, this model 
couldn’t at all be the best possible solution for our problem, however. The only 
way to find a better model is to try other possibilities one by one and compare them 
based on their adjusted R2, information criterion values, and the number of 
insignificant parameters that they have. We now try the much common ARIMA (1, 
d, 1) model to see whether it outperforms the one suggested by the Box-Jenkins 
method.  

Table 4. OLS Estimation using ARIMA (1, d, 1), Model 
Explained Variable: KSE 100 Index Quarterly Returns 
Estimation Method: Ordinary Least Squares 
Observations included: 88 after adjustments 
Variable Coefficient Std. Error t-Statistic p-Value 
C .052 .019 2.784 .006 
AR(1) .735 .227 3.236 .002 
MA(1) -.693 .252 -2.748 .007 
R-squared .055     Akaike info. criterion -1.02 
Adj. R-squared .033     Schwarz Bay. criterion -.936 
      Hannan-Quin criterion -.986 
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Table 4 returns the output of ARIMA (1, d, 1). Astonishingly, this model is better 
in every respect than the Box-Jenkins prescribed ARIMA (2, d, 2). For one thing, 
all of the coefficients of ARIMA (1, d, 1) are significant in contrast with ARIMA 
(2, d, 2) in which none of the coefficients were statistically significant. Also, all of 
the information criteria for ARIMA (1, d, 1) have much lower values than those for 
ARIMA (2, d, 2). Finally, the adjusted R2 value is also larger for ARIMA (1, d, 1) 
than the model proposed by the Box-Jenkins method. This inevitably makes 
ARIMA (1, d, 1) much superior to ARIMA (2, d, 2). However, before we give our 
final word about the best possible ARIMA configuration for our dependent 
variable, i.e., the quarterly returns of the KSE 100 index, we need to check all other 
possible models as well. 

The next and the final stage of the Box-Jenkins methodology involves a 
comparison of the various alternatives to seek the most practical and parsimonious 
solution to our problem. 
 
Diagnostic Checking 
 
Analysis in the former segment indicated ARIMA (2, d,2) to be the appropriate 
model for our variable. It was, however, shown that ARIMA (1, d, 1) is better than 
ARIMA (2, d, 2) in all respects. We will want to know whether we can have an 
even better solution to our problem. We will, therefore, estimate other models as 
well for this purpose. The following table presents the comparative results of a few 
other models. 

Table 5. Contrasting ARIMA models 
ARIMAmodel Adjusted R2 AIC SBC HQC Insignificant 

lags 
ARIMA (1, d, 1) .033 -1.020 -.936 -.986 None 
ARIMA (2, d, 1) .012 -.996 -.882 -.950 One 
ARIMA (1, d, 2) .021 -.998 -.885 -.952 One 
ARIMA (1, d, 3) .016 -.982 -.841 -.924 Two 
ARIMA (2, d, 2) .011 -.984 -.842 -.927 All 
ARIMA (3, d, 3) .077 -1.022 -.822 -.942 Two 
ARIMA (3, d, 4) .104 -1.042 -.813 -.949 Three 
ARIMA (4, d, 4) .083 -1.119 -.861 -1.015 Four 

A comparison of the different models is given in table 5. In terms of the number 
of insignificant parameters, one can consider ARIMA (2, d, 2) to be the worst 
choice having all lags insignificant. As per the adjusted R2, however, ARIMA (3, 
d, 4) takes the lead with a value of 10.4%. The model also has the minimum Akaike 
Information Criterion (AIC) value of -1.042. The Hannan-Quin Criterion (HQC) 
value is lowest for ARIMA (4, d, 4) and the Schwarz-Bayesian Criterion (SBC) 
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value, which plays the most important role in selecting the correct model, is the 
lowest for ARIMA (1, d, 1). 

If adjusted R2 is to be considered the decisive factor for model selection, 
ARIMA (3, d, 4) is to take the lead followed by ARIMA (4, d, 4). However, the 
former has three insignificant parameters whereas the latter has four. If, however, 
the three information criteria are given priority in the choosing the right model, 
ARIMA (1, d, 1) gets the edge as the model has the lowest SBC, the second-lowest 
HQC value after the over-parameterized ARIMA (4, d, 4) and the fourth-lowest 
AIC value. The important point, nonetheless, is that all those models having lower 
HQC and AIC values than ARIMA (1, d, 1) have insignificant parameters in the 
first instance, and also have much more lags involved violating the very principle 
of parsimony advocated by the Box-Jenkins methodology. It is therefore held that 
ARIMA (1, d, 1) is the most appropriate model for our variable for the following 
reasons; a) the model has the lowest SBC than any other model, b) the model has 
all its parameters highly significant, c) the model has the second-lowest HQC 
value, and d) the model is substantially parsimonious than the ones offering larger 
adjusted R2 and lower AIC or HQC values. 
 
Discussion 
 
We had found in the analysis section that ARIMA (1, d, 1) is the most fitting model 
for our variable. This very ARIMA configuration has remained very popular in the 
literature with many studies in the past finding the same model appropriate for 
their variables. There have been studies that found bigger models (the ones with 
more lags) to be more helpful in forecasting their variables. In general, however, 
ARIMA models have been considered to be reasonably successful in predicting a 
given variable’s future values. For instance, some of the studies meant for 
predicting stock prices using ARIMA modeling are the ones conducted by Mondal, 
Shit, and Goswami (2014),  and Adebiyi, Adewumi, and Ayo (2014). 

A few researchers have also used the ARIMA technique for anticipating crop 
production. These studies include the ones conducted by Padhan (2012), Manoj 
and Madhu (2014), Hamjah (2014), and Jadhav, Reddy, and Gaddi (2017). In 
nutshell, many attempts have been made by researchers using ARIMA for 
forecasting their variables and our study also, like previous studies, finds this 
method of prediction very helpful. 
 
Conclusion 
 
Around the world, security markets particularly stock markets are deemed to be 
the emblems of a given economy’s financial prosperity. They indicate investment 
prospects available in an area. A stock market that portrays a constant or a 
continual bullish behavior gains investors’ confidence, in turn, toss their 



Mustafa Afeef, Nazim Ali and Adnan Khan 

474                                                     Global Social Sciences Review (GSSR) 

investments without much hesitation. However, in a struggling or an uncertain 
market, investors take steps very carefully concerning throwing their money. Of 
course, they need to be able to predict what is to happen in the next few weeks 
and/or months. ARIMA modeling offers a way for investors to make their 
predictions efficient in the short run. We used the model for forecasting KSE 100 
index quarterly and it was found that the index could be very effectively anticipated 
based on a one-quarter previous value of the index and one-quarter previous value 
of the error term. Investors can use the findings of this study to track future changes 
in the stock market so that they can catch the most appropriate time to invest. 
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