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Abstract 

Anti-microbial treatment is extensively used in conventional tuberculosis treatment, leading to 
resistance development. In this review, we summarized the mode of action and susceptibility 
protocols of anti-Tubercular drugs. An effort to elucidate the role of genetic variations, cell 
membrane adaptions, and efflux pump modalities in treatment failure will be an asset in devising 
prospective strategies. 
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Introduction 

Despite being a preventable and curable disease, TB 
remains on top of the infectious killing disease, 
claiming 1.5 million lives every year. Young people 
between the ages of 15-34 are carrying the heaviest 
burden of this disease. Tuberculosis is the principal 
reason for anti-microbial resistance and fatalities 
among people suffering from HIV. In 2020, WHO 
reveals the 30% global decline in deaths caused by 
Tuberculosis, which shifts its place from 7th to 13th in 
2019. But still, this communicable disease is a major 
challenge in developing countries. Several treatment 
regimens have been implicated against Tuberculosis 
and MDRTB. XDRTB is treated with repurposed 
drugs like Phenothiazines and Novel drugs, including 
Bedaquiline, Delamanid, or Pretomanid. Mainly 
genetic mutation confers to resistance and now has 
also been shown by Novel drugs, indicating an 
alarming situation that needs utmost attention. 
 

First-Line Drug Resistance 

Isoniazid 

Isoniazid (INH) was presented in 1952 (Johnnson et 
al., 1997) and is deemed to be one of the potent 
prodrugs (Zhang and Yew, 2009) that exist as first-
line antibiotics (Raghunandanan et al., 2018). It is 
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triggered by the catalase/peroxidase katG enzyme 
(Boellela et al., 2016) and becomes a robust 
bacteriostatic agent (Kendler et al., 2018) against 
Mycobacterium Tuberculosis (Mtb) (Lentz et al., 
2018). It produces its activity by impeding mycolic 
acid production in the bacterial outer membrane 
while obstructing reductase enzymes, which is 
encoded by inhA (Rawat et al., 2003) and has MIC of 
[0.02microg/ml to 0.06microg/ml] (Lempens et 
al., 2018). 

The missense, mutation, implantation, redundancy, 
or even complete omission of genes (Vilcheze and 
Jacobs, 2007) can originate in ndh, kasA, katG, along 
with ahpC and inhA (Almeida and Palomino, 2011; 
Larsen et al., 2002). As previously discussed, it most 
frequently happens in S315T of katG, evolving 
substantial decrease or permanent failure of 
catalase/peroxidase function (Zhang et al., 1992). 
Structural reforms of the active domain and genetic 
variation in 215CT promoter region emerges in inhA  
(Leung et al., 2006), whereas hyper-expression 
of ahpC (Sherman et al., 1996) and silent genetic 
changes of mabAg609a (Ando et al., 2014) confers 
to resistance (Seifert et al., 2015). 64% katG S315T 
mutation have a significant decrease in susceptibility 
with MIC >1microgram/ml, while 19 % mutation in 
inhA promoter has mild resistance with MIC < 
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1microgram/ml (Riviere et al., 2020; Ayanwale et 
al., 2020). Scientific investigations have revealed a 
2-fold increase in resistance by inhibition of 
dihydrofolate reductase in Mtb due to the INH-NADP 
4R isomer (Wang et al., 2010). 
 
Rifampicin 

Rifampicin, amongst the broad-spectrum antibiotics, 
is used against bacterial pathogens (Sensi et al., 
1960). Rifampicin, possessing exceptional sterilizing 
activity (Rattan and Musser, 1998). RIF adheres to 
RNA polymerase enzyme, in turn, hinders mRNA 
production resulting in organism destruction. 

Resistance in rifampicin is correlated with a 
minimum of 10 genetic mutations (Sensi, 1983). The 
amino acid substitution in the rpoB gene is the major 
cause of resistance of RIF (Herrera et al., 2003). The 
51 bp RRDR of the rpoB gene mainly contributes to 
mutations in codon 516, 526, and 531 (Ramaswamy, 
1998; Herrera, 2003). Non-compliance drug 
resistance occurs. The modifications in several 
codons contribute to minor drug resistance (Heil and 
Zillig, 1970). Primary codon positions include 
511,516 along with 518. Various factors not limited to 
age, HIV infection prevalence, and geography may 
also account for resistance. Despite the rare 
occurrence of RIF resistance, studies have deduced 
concomitant resistance in RIF and isoniazid (Cohn et 
al, 1997). 
 
Ethambutol 

Introduced in the 1960s (Lee and Neguyen, 2020), 
Ethambutol (EMB) is a first-Line Drug (Sreevatsan et 
al., 1997) with bacteriostatic action (Thomas et al., 
1961), prescribed for the treatment of Tuberculosis 
since 1966 (Goude, 2009), only effective D-form 
(Lee and Neguyen, 2020). EMB is not given on its 
own, but in Quadruple following combinational 
therapy (Jeong et al., 2015) generating its effect by 
more than just interfering with the core polymer, 
Arabinogalactan AG (Takayama and Kilburn, 1989), 
but also hindering the synthesis of 
lipoarabinomannan LAM of the Mycobacterium cell 
wall (Dengg et al., 1995). Scholars demonstrated 
enhanced action of INH when it binds to 
transcriptional regulator TerR (Zhy, 2018). 

Almost 4% of the clinical isolates displayed 
resistance (Wright and Zignol, 2008) mainly driven 
by genetic substitution in Rv3806c and Rv3792 
(pathway genes), decaprenylphosphoryl-B-D-
arabinose (DPA) (Safi et al., 2013), arabinosyl 
transferase emb operon counting embB codon 289, 

292 and 306 (Lety, 1997; Starks et al., 2019). 
Moreover, embC and embA (Ramaswamy et al., 
2000) interferes with outer membranes permeability 
(Bakula et al., 2013). Current reviews managed to 
show no mutagenesis in embB, raising the question 
of having other mechanisms involved (Zhang and 
Yew, 2009). Analyses of the allelic exchange implied 
substitution of the amino acid (Sreevatsan et al., 
1997) in which the most common shift was 
Gly406Ala at nucleotide position 1217 by the 
transformation of G àC (Bakula et al., 2013) Mild, 
moderate, and major-level substitution have EMB 
MIC 20, 100, and >256microgram/ml respectively 
(Telanti et al., 1997).  
 
Pyrazinamide 

Pyrazinamide, like isoniazid and ethionamide, is a 
prodrug that requires mycobacterial enzyme 
pyrazinamidase for its conversion to pyrazinoic acid 
(Konno et al., 1967; Scorpio and zhang, 1996). 
Pyrazinamide introduction has shortened the TB 
treatment to 6 months (Mitchison, 1985). Various 
novel drug candidates are used together with 
pyrazinamide, in the mouse TB infection model, for 
optimal efficacy (K. Andries et al., 2005; 
Nuermberger et al., 2008). Postulated PAO action 
mechanism includes retardation in the kinetics of 
membrane, inhibition of membrane transmission, the 
production of Co-enzyme A, and increase in acidity 
of cell plasma (Zhang et al., 2003; Njire et al., 2016). 
Various studies propose fatty-acid synthase enzyme 
Type-I as a Pyrazinamide target (Zimhony et al., 
2007; Zimhony et al., 2000). Pyrazinamide encoding 
pncA gene mutation is majorly linked to decreased 
PZA susceptibility (Scorpio et al., 1997; Palomino et 
al., 2014). Unlike isoniazid, the domain for mutation 
of  PZA is significant (Pym et al.,  2002). However, 
few PZA resistant strains possess no pncA mutations 
(Cheng et al., 2000; Smith et al., 2013), which hints 
at an alternative mechanism. Several studies reveal 
the overexpression of the rpsA gene accounts for 
PZA resistance (Shi et al., 2011). Detailed analysis of 
rpsA gene, in resistant strains without pncA, 
indicated deletion of 3 base pairs GCC, leading to the 
exit of Ala 438 (Boni et al., 2000 ). Concerns exist 
over the contribution of rpsA in PZA resistance, 
which may conclude, need for further studies. 
 

Streptomycin 

Streptomycin, classified as a glycoside anti-microbial 
agent, was the initial curative agent for TB (Tasha et 
al., 2013), introduced in 1942 (Dookie et al., 2018). 
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Streptomycin adheres irreversibly to s12 protein in 
ribosomes and 16s rRNA (Moazed and Noller 1987; 
Finken et al., 1993), leading to inhibition of 
translation (Ruusala and Kurland, 1984), and 
interference with ribosomal proofreading (Winder, 
1982). Initially, mycobacterium tuberculosis was 
susceptible to SM. Gradually, resistance evolved due 
to mono drug therapy (Crofton and Mitchison, 1948). 
Mutations in rrs or rpsL genes account majorly for 
SM resistance. Simultaneous genetic variation in rrs 
or rpsL genes are rarely observed. Predominantly, 
rpsL gene alterations were at codon 43 and 88 while, 
codon 513 and 516 were observed for rrs gene 
(Betzaida et al., 2013). Investigation deduced the 
participation of gidB gene, in mild resistance (Verma 
et al., 2014; Spies et al., 2008; Okamoto et al., 
2007). Further, mechanisms, including efflux pumps 
and cell membrane disruptions, may also confer 
resistance.  
 

Second-Line Drugs  

Injectables Aminoglycosides  

WHO (World Health Organization) reported 
480,000 cases of MDR (Multi-Drug Resistance) 
Tuberculosis across the globe in 2014 (Zulma et al., 
2015). Currently, Aminoglycoside Injectables KAN, 
AMK, (Johansen et al., 2006) and Tuberactinomycin 
CAP and viomycin (Akbergenov et al., 2011) are being 
used as potential drugs against MDRT (Reeves et al., 
2013). Therapy through these medications is 
complicated, expensive, and hazardous due to its 
lengthy timeframe (Quenard et al., 2017; Zimen et al., 
2013). 

Kanamycin (KAN) was discovered in 1957 and 
clinically used in 1958 (WHO, 2009), producing its 
remarkable bactericidal effects (Hota et al., 2018; 
WHO, 2009). The action mechanism of 
aminoglycoside includes hampering of protein 
synthesis when it adheres with the 30S subunit in 
the ribosomes (Zaunbrecher et al., 2009). A research 
study found three rss gene mutations appearing in 
A140G, G1484T and C1402T (Jugheli et al., 2009; 
Maus et al., 2005) inevitably results in cross-
resistance amongst Capreomycin, Kanamycin and 
Amykacin (Campbell et al., 2011). Further 
investigations reported conformational changes and 
mutation in eis gene, resulting in accelerated 
expression of eis, which inactivates the KAN (Reeves 
et al., 2013; Abraham et al., 2020) but not AMK 
(Zaunbrecher et al., 2009). The same author 
suggests substitution in whiB7 of transcriptional 
activator provoking enhanced whiB7 transcripts, 

which ultimately leads to increased expressions 
of eis (Rv2416c) and tap (Rv1258c) (Reeves et al., 
2013).  
Capreomycin (CAP) is being extensively used against 
XDRT since 2006 after replacing KAN and AMK 
(Georghiou et al., 2012). CAP and Viomycin are 
bacteriostatic anti-microbial agents that bind to 50S 
subunits interfering with the translation process 
through intersubunit bridge B2a (Stanley et al., 2010) 
but do not interfere with mRNA (Tsukamura, 1969). 
Resistance transpired due to genetic variation in the 
tlyA gene (Brossier et al., 2017), causing the absence 
of the methylation process in rRNA (Johansen et al., 
2006). 
 
Fluoroquinolones 

Fluoroquinolones, possessing robust bactericidal 
activity, are classified amongst second-line drug 
therapy for TB (Almeida et al., 2011). Nalidixic acid 
derivatives include ciprofloxacin, ofloxacin, and a few 
novel compounds such as gatifloxacin and 
moxifloxacin (Dookie et al., 2018). Majorly FQ’s 
inhibit topoisomerase II (Aubry et. al 2004) and IV 
(Zhang and Yew, 2005; Bernard et al., 2015), 
resulting in DNA breakdown and microbial fatality 
(Andriole, 2005). FQ’s decrease susceptibility is 
associated with aminoacid switching of gyrA and 
gyrB genes (Takiff et al., 1994; Che et al., 2017; 
Smith et al., 2013). Studies reveal the predominant 
role gyrA gene over gyrB (Smith et al., 2013). Alanine 
90 and Aspartate 94 account majorly in gyrA gene 
mutation (Sun et al., 2008). Contrarily, codon 74, 88, 
and 91 role is limited (Maruri et al., 2012; Aubry et al., 
2006; Matrat et al., 2006). For significant FQ’s 
resistance, double amino acid substitution in gyrA or 
co-occurring mutations in gyr A and gyr B are 
prerequisites (Takiff et al., 1994; Kocagöz et al., 
1996). Alteration in cell membrane permeability to the 
drug (Almeida et al., 2011) and efflux-pump is 
significant in mediating resistance (Escribano et al., 
2007; Takiff et al., 1996; Cambau et al., 1996; Jarlier 
and Nikaido 1994). Further, MfpA protein, 
homologous to DNA structure, binds to 
topoisomerase II and inturn inhibits its action (Hegde 
et al., 2005), resulting in minor resistance (Smith et 
al., 2013; Ginsburg et al., 2003). 
 
Ethionamide 

Ethionamide, a second line structural analogue of 
isoniazid, is mainly utilized in multi-drug resistant 
tuberculosis therapy (Engohang-Ndong et al., 2004). 
Similar to isoniazid, ETH is a prodrug and possesses 
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a common pathway, which may result in cross-
resistance (Morlock et al., 2003). ETH may get 
activated by enzymatic action and bacterial 
metabolism (alian et al., 2017). Obstruction in the 
production of mycolic acid results in the breakdown 
of cell wall biosynthesis by activated drug (Morlock 
et al., 2003). 

ETH resistance may result from ethA and inhA 
mutations (Jacob et al., 1994; Clifton et al., 2000). 
Structural variations in C15–T of inhA are 
predominantly responsible for reduced susceptibility 
to ethionamide (Vannelli et al., 2002). Additionally, 
inhA-based ETH resistance may also conform to the 
cross-resistance of isoniazid (Diana et al., 2013). 
Studies demonstrate ethA expression is opposed by 
neighboring ethR gene (Engohang-Ndong et al., 
2004). 
 
Para-Amino Salicylic Acid 

In combinational therapy against Tuberculosis, 
second-line Para aminosalicylic acid (PAS) has been 
functioning since 1940 (Sumit et al., 2013; Lehmann, 
1946; Dye et al., 2002). Being less tolerated and 
toxic, its consumption was decreased dramatically 
(Iwainsky, 1988).  
Constrained growth of tubercle bacilli, attributed to 
the bacteriostatic drug disposition, is expected to be 
driven through impeding the synthesis of folic acid 
(Dye et al., 2002) and cell wall component 
mycobactin. (Vanessa et al., 2009). 
The primary explanation for the susceptibility against 
PAS takes place on account of mutagenesis of thyA 
and drfA coding region, pertaining to the 
biosynthesis of thymine nucleotide (Pablo et al., 
2009; Mitnick et al. 2003; sumit Chakraborty et al., 
2013). Maximum gene variations in thyA were 
recorded in TB patients from China (Bharti et al., 
2019). 
 

Novel or Repurposed Drugs 

Bedaquiline 

Bedaquiline, a diarylquinoline drug, seems to 
possess an unorthodox action mechanism against 
TB (Hendrik et al., 2014). WHO warned of deliberate 
drug administration, encouraging the emergence of 
resistance (Kenny et al., 2014). BDQ resistance, 
typically attributed to the mutations in atpE, Rv0678, 
intergenic region between Rv0678 and Rv0677c, 
and pepQ (Rv2435c) genes (N. Engyl et al., 2015; 
Kenny et al., 2014). In addition, the substitution of 
Rv0678 gene, acting as an inhibitor of the efflux 

pump, results in minute resistance (Amber, 2017). 
Polymorphisms in the Rv1979c and PepQ (Rv2535c) 
genome is affiliated with concomitant resistance in 
clofazimine (CFZ) (Deepak et al., 2016). 
 
Nitroimidazole 

Nitroimidazole antibiotics were discovered in the late 
1950s (Ang et. al., 2017). New prodrugs, Delamanid 
and Pretomanid, require bioactivation of nitro group 
to exert its bactericidal action, against both 
replication and hypoxic nonreplicating Tuberculosis, 
by decreased production of mycolic acid during 
outer membrane formation (Matsumoto et al., 2006; 
Samuelson, 1999), and nitric oxide release 
(Lamprecht et al., 2016; Singh et al., 2008), causing 
respiratory poisoning respectively. Resistance 
occurs by decreased activity/expression or mutation 
of reductive enzyme Ddn (Haver et al., 2015), which 
catalyzes menaquinone, only present in 
Mycobacterium Tuberculosis (Ang et al., 2017). Ddn 
enzyme is F420H2-Dependent (Gurumurthy et al., 
2013). Genomic sequence study showed 46 no-
synonymous substitutions, among which several 
mutants were unable to activate the drug 2 and 
deletion of Ddn quinone reductase(Jing et al., 2019). 
Variation in three binding sites (S78, Y130, Y136) 
and polymorphism (SNP) of genes of Ddn affect the 
nitroimidazole activating activity and confer to the 
resistance of the drug (Mohamed et al., 2016; Haver 
et al., 2015).  The study has also shown the 
difference of activity between two drugs against 
resistant mutant. Out of 75 mutants studied, 65 did 
not reduce the Delamanid, while 50 were unable to 
decrease Pretomanid (Lee et al., 2020; Cellitti et al., 
2012; Mohamed et al., 2016). It was also revealed 
that Mutations in Ddn also cause the transmission of 
disease (Ai et al., 2016). 
 
Phenothiazine (Chloramphenicol and Thioridazine) 

Phenothiazines discovered in 1883 (Masie, 1954) are 
tricyclic, anti-psychotic, “Non-Antibiotic” anti-
microbial agents expecting broad-spectrum 
intervention that modifies the cell permeability, 
illustrating synergistic effect along with other anti-
microbial agents (Amaral and Molnar, 1991; 
Kristiansen and Amaral, 1997; Amaral et al., 2001). 
Phenothiazine compounds such as Chlorpromazine 
(CPZ) and Thioridazine (TDZ), share the same 
potential activity against MDRTB and XDRTB 
(Ordway et al., 2003; Amaral et al. 2004; Viveiros 
and Amaral, 2001). 
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CPZ was formulated in 1950 as an anti-psychotic 
agent along with many nasty consequences (BMA. 
2010), but reconsidered as a potential anti-MDRTB 
(Alsaad et al., 2014). The concentration used 15-
20mg/L is higher than the clinically indicated value 
for a chronic patient (Molnar et al., 1997). CPZ 
produces its effect by preventing the growth and 
killing Mtb (Amaral and Viveiros, 2012). 

TDZ being less noxious, replaced the CPZ (Amaral et 
al., 1996). When given in combination at a dose of 
200mg/day, it contributes by interfering with gene 
expression, inhibition of efflux pump, suppression of 
replication, and retardation of Ca++ and K+ transport 
process that leads to complete extrusion and killing 
of bacteria (Amaral and Viveiros, 2012; Amaral and 
Mornal, 2012).  

According to an electronic database study, other 
anti-microbial agents that could be used against 
XDRTB include doxycycline, and Co-trimoxazole, 
and metronidazole which are not on the WHO list 
(Alsaad et al., 2014). 
 
SQ109 (Ethambutol Analogue) 

SQ109 is a potent anti-MDRTB agent (Onajole et al., 
2010) having a bactericidal activity (Boeree, 2017) 
that entered as an improved analogue of ethambutol 
in the clinical trials (Lee et al., 2003). SQ109 reported 
low bioavailability due to the first-pass effect and 
boosted up to 91.4% by administering as a prodrug 
(Meng et al., 2009). It targets the mycobacterial cell 
wall by lessening the mycolic acid concentration 
(Tetli et al., 2020); conversely, it acts as an inhibitor 
of the efflux pump (Te Brake et al., 2016). Moreover, 
it is also associated with MmpL3 inhibition (Tetli et 
al., 2020).  

Susceptibility in SQ109 tends to happen by 
mutagenesis in MmpL3 (Umumarararngu et al., 
2020). Recent research indicates impaired 
menaquinone synthesis, ATP synthesis, and cellular 
respiration on the cytoplasmic membrane (Tetli et al., 
2020). The activity of SQ109 is concentration-
dependent as complete extrusion happens at a 
concentration of 256mg/L and kills 99% Mtb when 
exposed to 64mg/mL within one day (de Knegt et al., 
2017). Synergistic effects are seen when SQ109 is 
combined along with isoniazid, rifampicin, and 
Bediquline, while augmented effects are noted with 
Streptomycin and Suetozid (PNU-100480) in in-
vitro studies (Umumarararngu et al., 2020). 
 
Linezolid 

Linezolid, the member of oxazolidinones, possesses 

 considerable in vivo and in vitro action against TB 
(Alcala et al., 2003; Cynamon et al., 1999). LZD 
inhibits the initial phase in protein formation by 
binding to 50s ribosomal subunit (Zhang, 2005; 
Escribano et al., 2007). G2572T and G2061T 
genetic variations in the rrl, leads to Anti-TB drug’s 
resistance (Navisha Dookie, 2018). Resistance 
results in elevation of MIC of 4–8 mg/L to 16–32 
mg/L range (Hillemann et al., 2008).C154R mutation 
in the rplC gene also impart LZD resistance 
(Bloemberg et al., 2015). The role of efflux 
mechanisms or other non-ribosomal modifications 
cannot be neglected.  
 
Clofazimine 

Clofazimine is a drug known as riminophenazine, 
specifically developed for tuberculosis treatment in 
1950 (Arbiser and Moschella, 1995). The precise 
action mechanism is uncertain, but neutrophil and 
monocyte appear to be the principal location of an 
operation where it prohibits the inflammatory action 
by scavenging hypochloric acid while preventing 
chlorination (Arbiser and Moschella, 1995). Also, 
bactericidal effect is produced by redox cycling of 
Clofazimine (Xu et al., 2017), shortening the therapy 
timeframe (Zhang et al., 2015) 

Genetic variation in transcriptional repressor 
Rv0678 linked with mmpS5 and mmpL5 genes is 
correlated with the upregulation of efflux pumps, 
which tends to result in resistant strains (Yew et al., 
2017; iu et al., 2020). Mutation involves the insertion 
and revocation of nucleotide G at 193 positions 
(Zhang et al., 2015). Further investigations revealed 
that Rv1979c involved in the transport of amino acids 
and, Rv2535c which encodes a proline 
aminopeptidase peptidase PepQ was spotted to be 
the risk factors of developing drug susceptibility 
(Zhang et al., 2015; Xu et al., 2017; Van et al., 2020). 
PepQ Rv3525c gene suggests mild resistance 
(Ameida et al., 2016; Xu et al., 2017). Research work 
reported 1.2microgram/ml MIC for Clofazimine. 
Adequate interventions can be made by constructing 
the MIC data to mitigate the transmission of resistant 
strains (Xu et al., 2017). Improved genetic knowledge 
can help in molecular diagnosis and monitoring of 
drug resistance (Kadura et al., 2020). 
 

NAS 91 & NAS 21 

In recent times, NAS 21 & NAS 91 exhibited 
promising anti-mycobacterial activity (Pedro, 2011). 
Being a dominant pharmacophore, NAS-91 acts as a 

candidate for future inhibitors (Choi et al., 2000). 
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According to M. bovis BCG examination, FAS-II 
dehydratase coded by Rv0636 developed the main 

target for resistance (Veemal, 2009). Partial 
obstruction of mycolic acid biosynthesis, as well as 

the variation in oleic acid production, occurs as a 
consequence of upregulated Rv0636 gene analogue. 
The oleic acid synthesis was inhibited, as 
demonstrated by an assay (Eduardo et al., 2011).  
 
Benzothiazinone 

Benzothiazinone is classified amongst potential 
tuberculosis treatment therapies (Variam et al., 
2017). DprE1 enzyme and its inhibitors are a member 
of newly introduced TB medications. (Inshad et al., 
2016). DprE1 and DprE2 speed up the conversion of 
DPR to its epimer DPA. Mycobacterial outer 
membrane production is modulated by DPA (Inshad 
et al., 2016). Mechanistic studies revealed the 
importance of the NO2 and Sulfur groups for anti-TB 

activity at position 8 and 1, respectively. Further, 
Trifluoromethyl significant role was also highlighted 
against Tuberculosis (Monika et al., 2016). 
 

Conclusion 

Decreased anti-microbial drug susceptibility against 
M. Tuberculosis presents a great challenge to human 
health globally. The inception of resistance to anti-
tubercular drugs is restricting the treatment options, 
which tends to be a great threat to human life, 
especially in developing countries. New therapy 
regimens, surveillance studies, and strategies for 
early diagnosis of declined drug susceptibility 
deemed mandatory.  
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